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Abstract 

Flooding is a global natural disaster that occurs when water rises over normal levels and damages infrastructure, 
buildings, and land. Lately, a substantial rise has occurred in the frequency and severity of floods in Nigeria due 
to urbanization, population growth and climate change. This study aims to identify areas in the Osun River Basin 
(ORB) in southwest Nigeria that are at risk of flooding as a result of increased rainfall patterns that can induce river 
flooding. 10 flood factors contributing to flood susceptibility were obtained around the study area. These remote 
sensing data were analyzed using a weighted overlay on ArcGIS. The Analytic Hierarchy Process (AHP) was particularly 
applied in analysing the flood factors and creating the flood susceptibility maps. Results obtained showed that flood 
events are probable in areas along the river bank, some areas that are low-lying terrains and areas where there is high 
rainfall. Ogun State falls within the areas with the lowest digital elevation, therefore the state is very highly susceptible 
to flooding from the tributaries of the Osun River. Areas such as Ijebu North, Ijebu North East, Ijebu East and Ijebu 
Ode were identified as highly susceptible to flooding from the maps created. This study will further help stakeholders 
and policymakers in reducing the impact of flooding in these areas.

Keywords  Flooding, Osun River Basin, ArcGIS, Flood susceptibility, Flood factors, Climate change, Analytic Hierarchy 
Process (AHP)

Background
Flooding is an event where water upsurges higher than 
standard levels and causes harm to land, structures, and 
infrastructure [26]. Recent years have seen a sharp rise in 
disasters caused by the climate. Variations in geological 
conditions, population growth and use of land all have 
an impact on climate-related disasters [9]. Floods are 
the deadliest of all climate-related natural catastrophes, 

killing an estimated 80% of people worldwide and causing 
an estimated $US60 billion in annual losses in addition 
to harming infrastructure and agricultural land already 
in use [21]. Scientists predict that sea levels will rise by 
4 inches by 2030 due to changes in the climate, which 
could potentially result in catastrophic flooding in many 
regions of the world [44]. According to a study conducted 
by the Institute of Environmental Studies, the effects of 
the rise in sea level will put over sixty per cent of global 
communities in danger of inundation thirty years from 
now [43].

In Nigeria, floods have become more frequent and 
severe in recent years, causing significant harm to infra-
structure, socioeconomic systems, and human lives. 
Destruction of agricultural land and infrastructure worth 
millions of dollars is caused each year by floods [21]. 
According to the Center for Research on the Epidemi-
ology of Disasters (CRED), flooding between 1969 and 
2020 resulted in approximately 21,000 fatalities and losses 
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totalling US$17 billion [21]. The International Federation 
of the Red Cross and Red Crescent Society (IFRC) also 
brought attention to the September 2020 flood, which 
affected 192,594 people across 22 states and resulted in 
825 injuries, 155 fatalities, and 24,134 displaced people 
[21]. The Federal government reported that 1.3 million 
people were relocated from their villages and at least 603 
people died in floods during the flooding that hit Nige-
ria in 2022. About 31 states experienced flooding in 2022, 
with Anambra, Kogi, Delta, Kebbi, Jigawa and Bayelsa 
among the states where flood-related fatalities have 
been reported [30]. According to the Federal Ministry of 
Humanitarian Affairs, Disaster Management, and Social 
Development, 82,053 homes were destroyed, 2,504,095 
million people were impacted, and 332, 327 hectares of 
land were utterly destroyed. According to other figures, 
there were 2,407 injuries, 121,318 partially destroyed 
homes, and 108,392 partially ruined acres of agriculture 
[30]. A cholera outbreak in northeastern Nigeria that was 
brought on by flooding that polluted the water supply has 
claimed at least 64 lives [14]. According to the United 
Nations World Food Programme and Food and Agricul-
tural Organization, Nigeria is highly vulnerable to devas-
tating levels of starvation [10]. Also, according to the UN 
Office for Humanitarian in Nigeria, fourteen million kids 
and nineteen million adults are in danger of malnutrition. 
In the north and northeast of the nation, 400,000 kids are 
vulnerable to severe acute starvation, and 500,000 more 
are in the states of Katsina, Zamfara, and Sokoto in the 
northwest [41].

Mapping flood susceptibility is essential to evaluate 
flood risk locations and create flood mitigation strategies 
[42]. An efficient method that is essential to the creation 
of a flood risk mitigation strategy is utilizing a compos-
ite risk and vulnerability rating to assess the likelihood of 
flooding. Several studies have been conducted regarding 
river basins’ susceptibility to flooding. Ramkar and Yadav 
[35] produced a map of data-scare river basins with an 
assessment of flood danger. The datasets used were ana-
lysed based on the Analytical Hierarchical Process (AHP) 
with Geographic Information System (GIS). The study’s 
flood hazard map was created with seven flood variables 
in consideration, and a map of flood danger was used to 
locate the river basin’s high-risk areas [35]. Kumar and 
Jha [23] also created a flood risk map using 7 flood fac-
tors with GIS tools. The study divided the basin’s terri-
tory into several risk zones, with huge portions of India’s 
Purnia and Madhepura being under high risk. Adedoja 
et  al. [3] analyzed the flood-prone zones in Osogbo, 
Osun state, Southwest Nigeria’s Okoko basin. In the 
study, four flood factors were investigated. The flood-
vulnerable areas of Osogbo’s Okoko basin were mapped 
for this study. According to the study, the estimated area 

of the study area is 17.85 km2, of which 14.2 km2 is in 
the locations that are most susceptible and 3.6 km2 is 
in the less susceptible regions. Meanwhile, 8204 build-
ings were identified to be highly susceptible to flood dis-
asters. A map of flood-prone areas of the city of Akure 
South, Nigeria, was also produced by another study [36]. 
According to the study’s results on flood vulnerability, 
the high vulnerability zone took up 25.5% of the area of 
study, while the extreme area of great danger made up 
13.9%. Of the research region, the low vulnerability zone 
made up 23.8% and the intermediate vulnerability zone 
36.8%.

A study additionally identified areas in Owerri, Imo 
State, Nigeria’s Otamiri River Basin that were vulnerable 
to flooding. The study produced a flood vulnerability map 
that highlighted the study area’s sensitive areas and the 
criteria for assessing flood risk within it [48]. AHP was 
used for identifying high-risk areas for flooding using 
seven factors. Extremely high flood vulnerability, which 
can be exceedingly dangerous, was found in the study. 
While existing research provides valuable insights into 
some causes and consequences of flood vulnerability, 
gaps in knowledge warrant further investigation. From 
previous research, the Analytic Hierarchy Process (AHP) 
is an effective tool for assessing flood vulnerability. The 
Analytic Hierarchy Process (AHP) is a decision-making 
method used in remote sensing and geographic informa-
tion science to organize and analyze complex decisions 
[1]. It combines mathematics and psychology to compare 
several options and assign each criterion an importance 
weight based on pairwise comparisons. An extensive and 
methodical framework for decision-making is offered by 
AHP, which divides complicated issues into smaller, more 
manageable components. This is especially helpful in 
determining flood vulnerability, which takes into account 
a variety of variables including hydrological, geological, 
socioeconomic, and environmental aspects [17]. AHP 
facilitates  prioritizing the various elements that affect a 
region’s susceptibility to flooding. AHP enables identify-
ing the most crucial areas that require attention in flood 
risk management by allocating weights to each criterion 
according to their respective importance [32]. Flood vul-
nerability assessment is a difficult process that considers 
several  flood-causing factors, each of which affects the 
total risk of flooding differently. The application of the 
Analytic Hierarchy Process (AHP) enables the methodi-
cal examination of these many components, ensuring 
that all pertinent factors are taken into account during 
the evaluation. AHP makes it feasible to rank the fac-
tors according to how important they are in relation to 
the danger of flooding. This is especially important in the 
Osun River Basin, where the distinct geographical, mete-
orological, and socioeconomic features of the area may 
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mean that certain influences have differing degrees of 
impact. The identified research gap is that flood vulner-
ability has not been carried out on the Osun River Basin 
using the AHP method. Given this, this research focused 
on assessing the flood vulnerability of the Osun River 
Basin using AHP. This study showed the Osun River’s 
influence and impact on areas in its tributaries, which 
has not been investigated in previous research. Further-
more, this study focused on identifying areas that are 
vulnerable to flooding in the Osun River basin (ORB) as 
the study area and created a flood risk map which can be 
used to prioritize the mitigation effects.

Flooding in Osun River Basin
Flooding poses a serious threat to the environment in 
Nigeria, especially in the Osun River Basin. It affects 
both human populations and the environment, with a 
variety of causes and effects [29]. Floods’ changing char-
acteristics are mostly due to factors like urbanization 
and global climate change. As a result, flood events are 
now occurring more frequently and covering a wider 
range of areas globally [33]. In the Osun River Basin, 
annual flood events have resulted in substantial loss of 
life and property damage [27]. In recent years, the capi-
tal of Osun state, Osogbo, has suffered from devastat-
ing floods primarily caused by heavy rainfall [22]. For 
instance, in 2013, the Oke Bale and Gbonmi areas expe-
rienced severe flooding that resulted in significant prop-
erty damage [22]. Subsequent years, 2015 and 2016, also 
witnessed catastrophic flooding events, causing extensive 
havoc to both lives and properties. The well-known fac-
tor accountable for the higher incidence of flooding is the 
wide spatial distribution of low-lying beaches and river 
floodplains accompanied by constant urbanization [50]. 
Typically, flat terrain contains areas that are vulnerable to 
flooding where floods stagnate for long periods, and this 
causes environmental danger [28]. In general, squatter 
settlements and subpar buildings, increased household 
density, land subsidence, urbanization of flood-prone 
areas, changes in land use, and population growth are the 
main causes of increased flooding in many regions of the 
world [34]. The hazards associated with floodwaters are 
also linked to several aspects of the flood, including its 
depth, duration, velocity, sediment load, rate of rise, and 
frequency of recurrence. Flooding is a complicated prob-
lem that affects the Osun River Basin and all of Nigeria. It 
is influenced by a number of variables, such as urbaniza-
tion, climate change, and inadequate waste management. 
The economy, social well-being, and environment of the 
impacted communities are all impacted by the extensive 
implications.

There were hundreds of homeless individuals and many 
destroyed buildings in Osogbo in 2019 after areas that 
had never experienced flooding before were swamped for 
many days [6]. Similarly, other regions within Osun state, 
including Ikirun, Ede, Ilobu, and Ifon, have also grap-
pled with ongoing flooding issues [40]. Adeoye et al. [5] 
investigated flood incidents in Nigeria and the risks they 
posed. This study focused on the socioeconomic effects 
of flooding in Nigerian cities and emphasized that cli-
mate change is a significant factor [5]. Adelekan [4] exam-
ined Lagos’ urban coastal populations’ susceptibility and 
offered insights into similar susceptibilities in the Osun 
River Basin. Umar and Gray [47] surveyed flood mapping 
and modelling in Nigeria in regard to the frequency and 
impact of floods in the last decade. The study examined 
the frequency and patterns of flooding and approaches to 
its modelling in relation to current practices globally. It 
was observed that the northern part of Nigeria is affected 
more by flooding than the south [47]. To enable appro-
priate planning and provide long-term solutions to the 
regular harm that flooding does to people and their prop-
erties in Osogbo, the capital of Osun state, Alimi et al. [6] 
mapped out flood-vulnerable locations inside Osogbo 
Metropolis using the geospatial methodologies. The Ana-
lytic Hierarchy Process (AHP) was utilized in this study 
to combine eight (8) flood-causing factors. According 
to the study, roughly 24% of the entire research area is 
located in a high flood risk zone, whereas 21% and 55% 
are located in a moderate or low flood risk zone, respec-
tively. The correctness of the Analytic Hierarchy Process 
(AHP) which is the methodology was demonstrated by a 
strong correlation between the studied area’s flood-prone 
areas and past flood occurrences. This motivated this 
research, considering that Osogbo is just a small part of 
the Osun River Basin, this research aimed to apply the 
same methodology to the Osun River Basin to identify 
areas that are most vulnerable to flooding.

Study area: Osun River Basin (ORB)
The Osun River is a major river in southwestern Nigeria 
that overflows during the rainy season. The areas in the 
tributaries are therefore vulnerable to river flooding. The 
Osun River basin extends along the states of Osun, Oyo, 
Kwara, Lagos, and Ekiti and includes the drainage basin 
of the Osun River and its tributaries. The Oke-Mesi Hill 
is the source of the Osun River’s flow system, which flows 
north through the Itawure Gap to latitude 7°53ʺ [8]. From 
there, it passes through Osogbo and Ede before enter-
ing Lagos Lagoon, which is located about 8  km to the 
east of Epe [31]. The basin has a Koppen Aw-type tropi-
cal continental climate with a humid tropical rainforest 
climate, AW represents a Tropical savanna climate with 
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dry-winter characteristics [8, 40]. The rainy season usu-
ally spans from April to November which is about eight 
months.

In the basin, two maximum rainfall events with peaks 
in July, September, and October are usually used to deter-
mine the rainy season [2]. Typically, the year-round max-
imum and nearly constant temperature is around 30  °C 
[2]. The length of the Osun River (ORB), which has been 
there for centuries, changes with the seasons. The river 
traverses rocks from the Basement Complex while pass-
ing through a small valley [20]. Major river systems in the 
basin, including the Osun, Erinle, Otin, and Ayiba Riv-
ers, have both dams and weirs. There are weirs at Okuku, 
Oyan, and Inisa [20]. The Oṣun River discharges into the 
Lagos Lagoon in southwest Nigeria after flowing south 
through the core of the Yoruba region. The shape file of 
the Osun River showing the drainage lines and the loca-
tion of ORB in Nigeria is shown in Fig. 1. The length of 
ORB is 267  km. ORB has its source in Ekiti state while 
the mouth is Lekki Lagoon. The river flows through six 

states namely Ekiti, Kwara, Oyo, Osun, Ogun and Lagos 
states.

Methods
Data
In this research, ten flood conditioning factors were 
selected as features of the ORB as of 2018: ten flood fac-
tors such as rainfall data, topographic water index (TWI), 
slope, drainage density, digital elevation model, soil data, 
distances from roads, normalized difference vegetation 
index (NDVI), distance from rivers, and land use land 
cover (LULC) data was selected as characteristics of the 
historical flood event. One of the most important and 
direct causes of floods is rainfall. It affects river basins 
by influencing the frequency and severity of flood events 
[19]. Both high-intensity and prolonged rainfall can cause 
flooding. TWI, a hydrological measure, integrates data on 
the slope and upstream contributing area to determine 
areas where water is expected to accumulate. considering 
its immediate effect on surface runoff, soil moisture, and 
potential waterlogging, it is essential to the assessment of 

Fig. 1  Location and Position of ORB showing Cities and Towns
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flood risk [51]. Drainage density, which is the total length 
of streams and rivers per unit area within a watershed, is 
an important consideration in hydrological and flood risk 
assessments. It offers information on the drainage capac-
ity of the landscape and is a crucial gauge of how rapidly 
and effectively water is distributed over an area. The risk 
of flooding may be significantly impacted by high or low 
drainage densities [45]. The slope is also one of the signif-
icant factors in the occurrence of floods due to its direct 
impact on surface runoff and infiltration potential [37]. 
The direct influence of slope on surface runoff and infil-
tration potential makes it one of the major variables con-
tributing to the occurrence of floods. An Earth’s surface 
representation that uses gridded elevation data is called 
a Digital Elevation Model (DEM). DEMs are essential for 
hydrological modeling and flood risk assessment because 
they offer comprehensive topographic data for an area. 
DEMs have a significant impact on flood dynamics, influ-
encing the magnitude of floods, accumulation zones, and 
water flow pathways [26]. Soil type is also an important 
flood-causing factor, this is because the ability of differ-
ent soil types to penetrate differs. For instance, clayey 
soils have lower penetration rates and hence higher sur-
face runoff, while sandy soils absorb water more quickly. 
The ability of the soil to absorb water is further dimin-
ished by changes in land use, such as urbanization and 
deforestation [38]. Five different types of soil were identi-
fied, which are clay, clay loam, silt loam, loam, and loamy 
sand. The composition of the soil in terms of clay, silt, 
and sand particles is particularly important since soil 
features such as these have a substantial impact on flood 
susceptibility. Due to its fine texture, clay soil has a lim-
ited amount of pore space, which causes slow drainage 
and waterlogging, thereby increasing its susceptibility to 
flooding. Clay loam soil is more likely to flood because 
it contains a larger proportion of clay. Silt loam soil is 
less prone to flooding caused by the fact that there are 
more silt particles and less clay and sand particles in it. 
This soil also has a moderate infiltration rate and moder-
ate drainage. Sand, silt, and clay particles make up loam 
soil, which offers adequate water infiltration and drainage 
and reduces flooding risk. Loamy sand soil is less prone 
to floods because it has a comparatively high sand con-
tent and a low silt and clay content. This combination 
produces a high infiltration rate and good drainage. Like-
wise, mapping the land-use-land-cover (LULC) is also 
a major determinant of flooding propensity, given that 
roads and buildings have impermeable surfaces, urbani-
zation decreases natural infiltration, raising the danger of 
flooding and surface runoff [16]. Flooding is very relevant 
to the classification of land use and land cover. Both the 
frequency and severity of flooding can be dramatically 
impacted by changes in land cover, such as urbanization 

and deforestation [6, 7]. Also, there is a growing need for 
land for agriculture and other uses and changing land 
use patterns result in altered infiltration rates, which 
heighten the dangers associated with flood zones. Hence, 
flood land usage and land cover will be mapped to deter-
mine locations that are particularly susceptible to floods. 
Although the NDVI in and of itself does not directly 
affect flooding, it can provide useful data for assessing 
and understanding the potential risk and impact of flood-
ing [49].

Data sources
Rainfall data was acquired from the PERSIANN Pre-
cipitation Climate Data Record (PERSIANN-CDR), and 
the mean rainfall data was derived. Elevation and flood-
ing typically have an inverse connection. In this case, 
the research area’s elevation was taken using the digital 
elevation model (DEM) and then used to derive drain-
age lines and slopes in ORB. The digital elevation model 
was obtained from the Copernicus open-access hub 
(www.​scihub.​coper​nicus). The digital elevation model’s 
spatial resolution is 10 m. TWI is a measure of how wet 
the area is and is used to identify possible floodplains in 
river basins. It was derived from information produced 
from DEM utilizing slope and flow accumulation func-
tions. The digital elevation model, slope, Landsat satellite 
image, NDVI, rainfall, topographic water index (TWI), 
and drainage density are downloaded in raster format and 
analyzed using Environmental Systems Research Institute 
(ESRI) ArcGIS 10.8. The soil data were retrieved from the 
Food and Agriculture Organization (FAO), which was 
used to derive the water-holding capacity of the soil. The 
land use land cover was mapped using ArcMap version 
10.8. It was utilized to determine the wetlands and is the 
focus of Esri’s ArcGIS group of geospatial processing 
tools. The drainage lines were used to calculate drainage 
density. Likewise, land-use-land-cover (LULC) is Landsat 
satellite imagery which were retrieved from USGS. The 
Landsat satellite image was downloaded and sampled at 
a spatial resolution of 30 m and resampled at 15 m. The 
distance to the river, distance to the road and soil type 
are in vector format. Slope and TWI are the geomorphic 
factors derived from a digital elevation model. NDVI and 
LULC were created from the Landsat satellite image. The 
widely used NDVI vegetation indicator was produced 
using data from remote sensing, mostly satellite images. 
It measures how verdant and healthy the vegetation is in 
a certain location.

Method of data processing with AHP
AHP is a technique in ArcGIS which is a powerful 
tool for making suitability maps. AHP is a structured 
approach, the flood-causing factors were ranked, 

http://www.scihub.copernicus
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weighted, and combined to create an extensive flood 
risk map using the AHP. The AHP was used to rank 
and weight the 10 flood indicators in order to identify 
areas at risk and determine the degree of flood vulner-
ability in the Osun River Basin. The relative impact of 
each pair of flood factors in influencing flood risk is 
compared. Given its direct influence on the frequency 
of floods, rainfall data is highly ranked. It was given a 
high weight because of its substantial impact on flood-
ing, it was combined with additional elements to evalu-
ate total flood susceptibility. TWI was combined with 
other topographic data to improve the identification 
of flood-prone areas. It is ranked based on its capac-
ity to identify probable water accumulation zones. 
Depending on the topographic variability of the area, 
it is ranked high weight. Since steeper slopes enhance 
faster runoff, they are given a higher ranking. Given 
that flooding might be affected by both steep and flat 
slopes, moderate weight is assigned. It was integrated 
with TWI and DEM to provide a thorough topographic 
evaluation. Areas with high drainage densities are 
given a higher ranking because of their impact on flood 
dynamics. It was given a moderate weight because good 
drainage can lessen the effects of flooding. It was com-
bined with river distance and DEM to provide precise 
mapping of flood danger. The fundamental importance 
that digital elevation models play in flood simulation 
accounts for their high ranking. Elevation data influ-
ences all other topographic elements, which explains 
its high weight. It was combined with drainage density 

and slope to produce a thorough topography profile. 
The soil’s capacity to both absorb and discharge water 
was used to rate the soil data. Its weight ranged from 
moderate to high, based on the study area’s variety of 
soil. To evaluate the possibility of surface runoff, the 
data was combined with information on rainfall and 
land use. The increased runoff and possible block-
ages near highways make them higher on the ranking. 
This flood-causing element has been given a moderate 
weight, which reflects its indirect influence on flood 
dynamics. To take human impacts into account, it was 
paired with LULC and NDVI. Since vegetation can have 
a considerable impact on soil moisture and surface run-
off, but is not the primary cause of flooding, the NDVI 
is typically given a moderate weight. The direct correla-
tion between distance from rivers and flood risk makes 
them highly weighted. Given the significant influence 
that agriculture, urbanization, and natural landscapes 
have on flood risk, LULC is frequently accorded a high 
weight. Each factor is compared with every other fac-
tors in the matrix created from the pairwise compari-
son results which is shown in Table 1. The Table shows 
the percentage of each of the factors and the weights 
of the factors used for the AHP and Fig.  2 shows the 
weights of each factor. The weight of each element 
is determined by calculating the average of each row 
in the normalized pairwise comparison matrix. The 
relative significance of each component in the overall 
assessment of flood risk is reflected in these weights.

Fig. 2  Weights of the factors used for the Analytical Hierarchical Process (AHP)
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Results and discussion
The conditioning factors are rainfall data, topographic 
water index (TWI), slope, drainage density, digital eleva-
tion model, soil data, distances from roads, normalized 
difference vegetation index (NDVI), distance from riv-
ers, and land use land cover (LULC) data. There were five 
categories for flood susceptibility: extremely high, high, 
moderate, low, and very low.

The result of the elevation values of the basin ranged 
from 4  m to 1,238  m as shown in Fig.  3. Areas with 

elevation of 4 m to 200 m are areas with lower elevations 
which are at greater risk of flooding due to their prox-
imity to bodies of water or their limited ability to drain 
water, whereas areas with elevation of 600 m to 1,238 m 
have higher elevations and are less prone to flooding as 
a result of their increased ability to drain water or their 
reduced proximity to bodies of water [13]. Areas with 
elevation ranging from 200 to 600 m have moderate flood 
susceptibility even though water can still accumulate 

Fig. 3  Digital elevation model of ORB
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in these areas depending on some other flood causing 
factors.

The land use land cover was classified into bare sur-
faces, built-up areas, water bodies, forests and light 
vegetation. Flooding is very relevant to the classifica-
tion of LULC. Figure 4 shows the result of the flood sus-
ceptibility based on Land use land cover. Table 2 shows 
the area in kilometre square of the classified items and 
the percentage of the land cover over the basin. The 
result shows the total area considered for this study 

is 10,368.6km2, then the bare surface covers the larg-
est area of the basin which is 4693.1km2. Bare surfaces 
was 45.3% which comprised areas without vegetation, 
that is, areas that have no features on them such as 
rocks,  cleared  lands and so on. In the basin, bare sur-
faces make up the majority of the land cover type. These 
regions usually have little vegetation, which increases 
surface runoff and raises the danger of flooding because 
of the poor infiltration capacity. Built-up areas make up 
5.7% which are urban areas having buildings and other 

Fig. 4  Land use land cover classification of ORB
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impervious surfaces. Because of their high runoff and 
little infiltration, these places are vulnerable to flood-
ing. Forest make up 30.1% which is the dense vegeta-
tion cover, this area lowers the danger of flooding by 
boosting infiltration, decreasing surface runoff, and 
both. Areas with little vegetation make up the 18.2%. 
There is an intermediate danger of flooding in these 
locations due to their moderate runoff and infiltration 
capacity. Natural water bodies like rivers and lakes are 
referred to as waterbodies which covers 0.7%. Because 
these places serve as zones for water storage, they are 
naturally vulnerable to flooding. Table  3 shows flood 
susceptibility based on land use land cover classifica-
tion. The classified area covering 73.2km2 of the basin 
shows very high susceptibility to flooding which takes 
0.7% of the entire basin. 30.1% was the Very Low Sus-
ceptibility, which is mainly associated with forested 
environments. Because forests have a high density of 
vegetation, they are less susceptible to flooding because 
of improved water absorption and decreased surface 
runoff. At 45.3%, the Low Susceptibility falls under the 
category of bare surfaces. These landscapes are large 
and may contain regions with modest elevation differ-
ences, which reduces flood risk compared to built-up 
areas, despite the great potential for runoff. 5.7% is the 
moderate susceptibility, and it is linked to populated 
places. Although the comparatively smaller area keeps 
the overall flood sensitivity to a moderate degree, urban 
infrastructure can make floods worse. There is a corre-
lation between locations with light vegetation and the 
high Susceptibility of 18.2%. The inadequate absorp-
tion and infiltration capabilities of the scant vegeta-
tion increases the risk of flooding. The 0.7% very high 
susceptibility is mostly seen in aquatic bodies. Because 
these areas naturally gather and store water from rain-
fall and runoff, they are vulnerable to flooding.

The NDVI ranged from -4 to 0.44 which was catego-

rized into high or low as shown in Fig. 5. The lower the 
NDVI, the lower the flood susceptibility. The NDVI 
was calculated from the downloaded Landsat satel-
lite  imagery. Flooding and the NDVI have a negative 

relationship: greater NDVI values suggest a lesser chance 
of flooding, whereas lower NDVI values imply a higher 
chance of flooding [47]. The Osun River Basin’s NDVI 
analysis shows a distinct pattern where vegetation den-
sity, as indicated by NDVI values, corresponds negatively 
with the likelihood of flooding. Because of improved 
water absorption and less runoff, locations with greater 
NDVI values have lower flood risks, whereas places with 
lower NDVI values have higher flood risks.

The rainfall around the basin ranged from 3.7  mm 
to 4.9  mm as shown in Fig.  6, rainfall is a major factor 
that causes flooding. Therefore, the more precipitation 
the greater the rainfall around the basin ranging from 
3.7 mm to 4.9 mm as shown in Fig. 6, rainfall is a major 
factor that causes flooding. Therefore, the more precipi-
tation the greater the vulnerability to flooding [25]. The 
amount of rainfall has a significant impact on flood sus-
ceptibility. According to the rainfall data gathered, the 
Osun River Basin saw rainfall ranging from 3.7  mm to 
4.9  mm, as seen in Fig.  6. The amount of rainfall varies 
significantly throughout the basin, which has a substan-
tial impact on the flood danger in various locations espe-
cially at the lower part of the basin.

The distance to the river was measured in meters rang-
ing from o meters to 20,000 m. Certainly, the shorter the 
distance to the river, the higher the flood susceptibility. 
Figure 7 shows the classification based on the distance to 
the Osun River. In the same way, the distance of the river 
to the road was also measured in meters ranging from 
0 m to 6,800 m. The distance was classified from very low 
to very high as shown in Fig. 8.

The result of the slope ranged from less than zero to 
1,197.59 per cent rise. Figure 9 shows the classification of 
the slope in the river basin from very low to very high. 
Steep slopes produce higher speeds for water to flow 
than flatter or gentler slopes, therefore, runoff may be 
disposed of more quickly [25]. The Osun River Basin has 

a slope that varies from less than zero, which denotes a 
little fall or flat sections, to 1,197.59 per cent, which is a 
strong increase. Water flows more quickly down steep 

Table 2  Land use land cover classification of ORB

S/N Class name Area (Km2) Per cent

1 Bare Surfaces 4693.1 45.3

2 Built-up Area 588.1 5.7

3 Forest 3123.3 30.1

4 Light Vegetation 1890.9 18.2

5 Waterbody 73.2 0.7

Total 10368.6 100.0

Table 3  Flood susceptibility based on land use land cover 
classification of ORB

S/N LULC Area (Km2) Per cent

1 Very Low 3123.3 30.1

2 Low 4693.1 45.3

3 Moderate 588.1 5.7

4 High 1890.9 18.2

5 Very High 73.2 0.7

Total 10368.6 100.0
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slopes. Water doesn’t stay on the surface for very long 
because it goes off rapidly. It is less likely for the swiftly 
flowing water to build up and result in flooding. How-
ever, under other circumstances, the quick runoff may 
cause flash floods down the hill when the slope lessens. 
The Osun River Basin’s slope analysis demonstrates how 
greatly topographic diversity affects flood susceptibility. 
While gentle slopes and flat areas are more vulnerable to 
floods because of slower water movement and increased 
accumulation potential, steep slopes tend to lessen the 

risk of flooding in their immediate vicinity by facilitating 
quick water runoff.

The soil type was classified into five which are; clay, clay 
loam, silt loam, loam and loamy sand. Soil characteristics 
play a crucial role in flood susceptibility, and the com-
position of soil in terms of clay, silt, and sand particles is 
particularly significant [15]. The classification of the soil 
type in ORB is shown in Fig. 10.

The topographic wetness index (TWI) is based on the 
knowledge of how much water is distributed through-
out a river basin. Higher TWI classes indicate increased 

Fig. 5  Normalized Difference Vegetation Index (NDVI) of ORB
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likelihood of floods in the river basin [46]. TWI measures 
the geographical distribution of soil moisture, which is 
directly associated with the danger of flooding and sur-
face runoff. The map of flood susceptibility shown in 
Fig.  11 was created by classifying the TWI values, and 
this map aids in understanding the spatial distribution 
of flood risk throughout the Osun River Basin. There are 
several classifications within the TWI value range (1.7 to 
26) that correspond to different levels of flood suscepti-
bility. Based on the TWI values, this classification helps 
in identifying the places with high, moderate, and low 

flood hazards. Based on the potential for water buildup, 
the TWI study of the Osun River Basin shows the area’s 
variability in flood risk.

The drainage density was measured in meters and 
it ranged from 0.032 to 0.98 for the ORB. It was fur-
ther classified based on flood susceptibility as shown in 
Fig. 12. The larger drainage density, causes the water dis-
charge to rise [39]. Some part of the area has a low den-
sity of drainage channels, which means there are fewer 
or longer distances between channels. The low drainage 
density in the area is 0.032. A high density of drainage 

Fig. 6  Rainfall of ORB
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channels with more frequent and shorter channel spacing 
was represented by a high drainage density of 0.98.

The created maps were extracted at every 100-m inter-
val. The 10 conditioning flood factors were weighed 
based on their importance using the Analytic Hierarchy 
Process (AHP). Figure 13 shows the result of the combi-
nation of the 10 components in the flood vulnerability 
maps of the ORB. The flood susceptibility was character-
ized as high, moderate, low and very low. Flood risk is 
divided into five categories on the map according to risk 
assessment: Very Low (green), Low (yellow), Moderate 

(blue), High (orange), and Very High (red). The regions 
most at risk are shown in red, denoting those that are 
most vulnerable to flooding. Meanwhile, the water bod-
ies are probably going to affect the flood danger in nearby 
places based on Geographical Features. The concentra-
tion of the high-risk zones (orange and red) around riv-
erbanks and low-lying areas suggests that these places are 
more vulnerable to flooding because of their close prox-
imity to water sources. This map can be utilized for infra-
structure development to reduce flood hazards, disaster 
management, and urban planning. Flood protection and 

Fig. 7  Distance to the ORB
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disaster preparedness measures should be emphasized in 
areas with high and extremely high risk.

The topographic wetness index (TWI) is based on the 
knowledge of how much water is distributed throughout 
a river basin. Higher TWI classes indicated an increased 
likelihood of floods in the river basin [46]. The results 
ranged from 1.7 to 26 and the range based on the clas-
sification for flood susceptibility to produce the map and 
the classification is shown in Fig. 11. TWI is a measure of 
how wet the area is and is used to identify possible flood-
plains in river basins. It was derived from information 

produced from DEM utilizing slope and flow accumu-
lation functions. The drainage density was measured 
in meters and it ranged from 0.032 to 0.98 for the ORB. 
It was further classified based on flood susceptibility as 
shown in Fig. 12. The larger drainage density, causes the 
water discharge to rise [39].

The elevation of the Osun River Basin varied from 4 to 
1,238 m. Because of their proximity to the river and inad-
equate drainage, lower elevations (4–200  m) are more 
likely to flood, whereas higher elevations (600–1,238 m) 
are less likely to flood because of improved drainage. 

Fig. 8  Distance of road to the ORB
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Danu [12] similarly effectively ranked elevation in Dam-
man, Saudi Arabia for flash floods. In conclusion, this 
study used maps created by Geographic Information Sys-
tems (GIS)-based spatial analysis, such as APH, to iden-
tify the spatial patterns of vulnerability of flooding of the 
Osun River basin. Danu [12] similarly carried out an Ana-
lytic Hierarchy Process (AHP) evaluation of flood-prone 
areas to improve flood resilience in Dammam, Saudi Ara-
bia. Danu [12] evaluated five flood-causing factors, with 
a priority weight of 32%, the results show that rainfall 
has the largest chance of causing flash floods, followed 

by land use (19%) and slope (18%). The least significant 
contributing characteristics were determined to be soil 
type and elevation, with priority weights of 15% and 16%, 
respectively. According to the LULC ranking and weight, 
built-up areas (5.7%) and bare surfaces (45.3%) are the 
most vulnerable to flooding because of impermeable sur-
faces and high runoff. Forests (30.1%) and light vegetation 
(18.2%) reduce the risk of flooding by improving infiltra-
tion and reducing runoff, while water bodies (0.7%) are 
naturally prone to flooding because of water accumula-
tion. The basin has 3.7 to 4.9 mm of rainy seasons. The 

Fig. 9  Slope in the ORB
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fluctuation in rainfall throughout the basin has a substan-
tial impact on flood vulnerability. Higher precipitation is 
strongly correlated with increased flood risk, especially 
in lower elevation and flat places where water accumu-
lation is more likely. Lower NDVI values suggest greater 
flood susceptibility due to reduced vegetation cover, lead-
ing to increased runoff. Conversely, higher NDVI values 
indicate better vegetation cover, enhancing water absorp-
tion and reducing flood risk. The slope values were found 
to range from less than zero to 1,197.59 per cent growth. 
Faster water runoff is made possible by steep slopes, 

which lessens the chance of flooding. However, places 
that are level or have a gentle slope collect more water, 
which makes flooding more likely. The variance in slope 
emphasized how crucial it is to take topographic vari-
ables into account when evaluating flooding. Similarly to 
this study, Hasanuzzaman et al. [18] assessed flood Vul-
nerability Torsa- Raidak River basin using AHP. Rainfall, 
LULC and distance from the river contributed the most 
to causing flood in the Torsa- Raidak River basin as the 
main causative factors. TWI levels in this study indicated 
possible water accumulation and ranged from 1.7 to 26. 

Fig. 10  Soil type and flood susceptibility in the ORB
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Given their greater water retention, higher TWI values 
signify a higher risk of flooding. The TWI analysis used 
patterns of water distribution to identify areas that are 
differentially vulnerable to flooding. Lappas and Kallioras 
[24] assessed flood Susceptibility in a Central Greek River 
Basin using the Analytical Hierarchy Process (AHP). 
It was also observed that TWI had the most influence 
(weight) on the assessment of floods caused by both nat-
ural and man-made factors. The range of drainage density 
is 0.98 m to 0.032 m. Areas with higher drainage densities 
are less susceptible to flooding because they can manage 

runoff better. Because of ineffective water transporta-
tion, areas with lower drainage densities are particularly 
susceptible. Burayu et  al. [11] used the combination of 
GIS, remote sensing, and the analytical hierarchy process 
(AHP) to identify flood-prone and risk areas in the Oro-
mia region, Ethiopia. Eight factors were evaluated includ-
ing the drainage density which ranged moderately as a 
flood-causing factor in the case study.

The created maps were extracted at every 100-m 
interval. The data was classified based on flood 

Fig. 11  Topographic water index in the ORB
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susceptibility as; Very low, Low, Moderate, High and 
Very High. The 10 conditioning flood factors were 
weighed based on their importance using the Analytic 
Hierarchy Process (AHP). Figure  13 shows the result 
of the combination of the 10 components in the flood 
vulnerability maps of the ORB. The flood susceptibility 
was characterized as high, moderate, low and very low. 
From the map, it was identified that over 200 locations 
are highly susceptible to flooding. This calls for action 

by stakeholders and policymakers to avoid tragedies 
that come with flooding.

Conclusion
Using a variety of conditioning factors, this study pro-
vided the assessment of flood susceptibility in the Osun 
River Basin with a detailed understanding of the flood 
risks throughout the basin. Five classes of flood sensitiv-
ity were identified based on the ten flood-causing factors: 
very low, low, moderate, high, and extremely high. Flood-
prone zones in the Osun River basin were identified using 

Fig. 12  Drainage density of ORB
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the Analytic Hierarchy Process (AHP) and Geographic 
Information Systems (GIS)-based spatial analysis. The 
results showed that Ekiti State has the lowest flood sus-
ceptibility which can be caused by the Osun River flood-
ing. Oyo state is susceptible to moderate floods from the 
river flooding. Osun State and Lagos State have some 
locations that are very susceptible to flooding from the 
tributaries of the river. Ogun state is the most affected, 
most places that are very highly susceptible to flood-
ing from the tributaries are found in areas such as Ijebu 
North, Ijebu East Ijebu, North East and Ijebu Ode. Future 

research should focus on integrated strategies that con-
sider the interplay between the physical, social, and 
policy components, creating opportunities for effective 
interventions to increase flood resilience and decrease 
the effects of floods on the environment and people living 
along the tributaries of Osun River. As a result, this study 
gives legislators, urban planners, and local stakehold-
ers an excellent framework to help them make decisions 
about how to reduce flooding in other locations with the 
same degree of unpredictability. Future work to be done 
is carrying out another set of weight on the result in each 

Fig. 13  Flood susceptibility of the ORB
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of the states found in the river basin, this will aid iden-
tification of the most significant flood-causing factors in 
each state.
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