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Abstract 

Background  The Weather Research and Forecasting (WRF) Model is an exceptional software for mesoscale climate 
modeling. It is extensively used to simulate key meteorological variables, including temperature, rainfall, and wind.

Methods  This study thoroughly examined the effectiveness of the WRF model in generating precise wind data 
for assessing the potential of wind power in Burundi. A meticulous evaluation of various combinations of model phys-
ics parameterization schemes was conducted to ensure accuracy.

By comparing the simulated data with measurements from four meteorological stations and utilizing statistical met-
rics such as root-mean-square error (RMSE) and bias, the accuracy of the WRF model was determined.

Results   The findings of the study uncovered that utilizing WRF Single-Moment 3-Class (WSM3) for microphysics, 
Grell-Devenyi ensemble for cumulus physics, and Yonsei University for planetary boundary layer yields highly accurate 
wind data results for Burundi.

Furthermore, the WRF model was utilized to create detailed seasonal and annual mean wind maps with a high 
resolution. 

Conclusion  These maps demonstrated that the western part of Burundi experiences higher wind speeds (ranging 
from 4 to 9.7 m/s) during the dry seasons revealing the potential for wind energy harvesting in the different areas 
of Burundi.

Keywords  WRF parameters, Burundi country, Wind potential, Wind simulation

Background
Maintaining affordable, sustainable, modern, and reli-
able energy access for everyone is essential for fostering 
sustainable development in any nation. Unfortunately, 
energy access in Africa, particularly in the Sub-Saharan 

Africa (SSA) region, lags behind the rest of the world. The 
global population without electricity decreased by 45% 
since 2010, mainly due to progress in developing Asia. 
However, it is disheartening that 760 million people still 
find themselves living without electricity today. In sub-
Saharan African countries, the situation is particularly 
critical, with roughly 80% of the population lacking this 
essential resource. Despite some improvements in recent 
years, they have unfortunately not kept pace with rapid 
population growth. Consequently, the number of people 
deprived of electricity has increased by 2.5% since 2010. 
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The continuous increase in the number of people with-
out electricity access is truly alarming. From 580 million 
in 2019, this number has now reached a staggering 600 
million in 2022, reaching unprecedented levels [1–5]. This 
study focuses on Burundi, which is listed among the five 
countries in SSA with the lowest electrification rate [6–8]. 
This country has an estimated population of 11.89 million 
(the year 2020 figures) over an area of 27,834 km2 with 
only around 12% of electricity access and a low annual 
increase estimated between 0 and 2% [9]. Around 85% of 
the total electricity production comes from hydropower, 
making it the main source. The solar energy source comes 
next, contributing approximately 10%, followed by tradi-
tional biomass sources, which make up the remaining 5%. 
Unfortunately, during the dry seasons, power cut-offs are 
very frequent [10, 11].

Hence, most of the population in Burundi uses fire-
wood and other solid fuels for cooking and lighting. This 
contributes to the negative economic, health, and envi-
ronmental impacts caused by burning these fuels. The 
extraction and consumption of traditional biomass in its 
current form has dire consequences for the environment. 
Forest degradation, deforestation, and the loss of biodi-
versity are just a few of the negative outcomes. Addition-
ally, the combustion of wood for energy releases harmful 
greenhouse gases into the atmosphere, contributing to 
climate change. Moreover, indoor air pollution resulting 
from traditional biomass use poses serious health risks to 
families. It is clear that urgent action is needed to address 
these issues and find sustainable alternatives [12–14].

Therefore, there is an urgent need for a global study 
on the potential of alternative and sustainable clean 
energy sources, such as solar and wind, for the country 
to enhance energy production and access rates while 
reducing the emission of greenhouse gasses. This study 
aims to evaluate the potential of wind energy as a power 
source in Burundi. Wind energy has been rapidly gaining 
popularity as a clean and sustainable alternative in vari-
ous parts of the world. Wind power presents a promising 
renewable energy option that has no negative impact on 
air or water quality. It is one such source that holds great 
promise in this regard. Between 2000 and 2022, the global 
cumulative installed wind power capacity increased from 
17.4 to 898.8 GW (as shown in Fig.  1). Furthermore, 
between 2018 and 2022, there was an impressive aver-
age annual increase of 71.7 GW. These numbers indicate 
a rapid rise in the installation of wind power. However, 
wind power capacity development in Africa remains very 
low, with only 7.68 GW installed in 2022 [15–17].

Recent studies have indicated that Burundi holds great 
potential as a location for wind energy production. This 
applies to both large-scale and small-scale projects, mak-
ing it a highly promising prospect [19, 20]. As previously 
mentioned, hydroelectric power is the main source of 
electricity generation in Burundi. However, embracing 
wind energy can play a pivotal role in diversifying the 
energy mix, mitigating greenhouse gas emissions, and 
enhancing energy security. Furthermore, this form of 
clean energy has the potential to bridge the existing elec-
tricity accessibility gap between urban and rural areas, 
thus fostering a more equitable distribution of power [10, 

Fig. 1  Historical total installed wind power capacity (in Gigawatts) [18]
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12]. Nevertheless, it is imperative to conduct thorough 
research to fully evaluate the wind energy capacity of 
the nation. A comprehensive wind resource assessment 
(WRA) is crucial for the success of future wind energy 
initiatives. The Wind Resource Assessment (WRA) is 
responsible for assessing wind resources by measuring 
crucial factors such as average wind speed, wind direc-
tion, wind energy density, and the potential seasonal/
annual wind energy output of a proposed wind power 
facility. In addition, it also involves wind resource mod-
eling [21–23]. However, it is important to acknowledge 
that achieving an accurate WRA presents a series of chal-
lenges [24]:

•	 Weather-related uncertainty: Due to the dynamic 
nature of wind as a weather phenomenon, accurately 
estimating the long-term wind resource is challeng-
ing. Climate changes have an impact on the year-to-
year wind variation.

•	 Instrumentation accuracy: Successfully measuring 
wind resources requires precise placement and ori-
entation of instruments. Ensuring that instruments 
retain their performance over multiple years and 
effectively handling a large volume of data is equally 
important.

•	 Limited measurement sites: The prevailing method 
of estimating wind resources for extensive areas or 
regions involves analyzing wind measurements from 
specific sites within the considered area. However, 
the availability of required meteorological masts for 
obtaining sufficient measurements is often lacking in 
most cases.

The above challenges are not unique to Burundi but 
are common in WRAs in many regions. As stated before, 
effectively assessing wind resources in extensive areas 
requires analyzing wind measurements from various 
sites throughout the region in question. To ensure accu-
rate results, it is crucial to have comprehensive spatial 
coverage and reliable data. However, meeting this con-
dition might be challenging at times. Therefore, alterna-
tive techniques are necessary to provide valuable insights 
into the geographical distribution of wind resources. 
Such techniques can greatly assist in decision-making 
and the planning of feasibility studies [25, 26]. Numerical 
weather prediction (NWP) models have become essential 
in addressing the problem of inadequate wind measure-
ments. Through numerous studies, these models have 
proven their efficacy in generating wind resource fore-
casts and serving as an alternative source of wind data 
[27, 28]. Among the various NWP models, the Weather 
Research and Forecasting (WRF) model stands out as 
the most popular choice. Renowned for its efficiency, 

flexibility, and capability to simulate wind forecasting, 
the WRF model has gained wide recognition. Its ease of 
use, accurate downscaling, and compatibility with vari-
ous microscale models make it a valuable tool in wind 
research. By utilizing the WRF model, researchers have 
been able to produce high-resolution wind data that 
significantly reduces deviations compared to measure-
ments, leading to more precise wind resource estima-
tions. An added advantage is the capability to produce 
detailed wind resource maps at different altitudes. This 
enables the identification of potential resources, assess-
ment of theoretical capacity, and generation of high-
resolution wind data at a kilometer scale in areas where 
measurements are not accessible. Furthermore, previous 
research has emphasized the exceptional performance 
of the WRF model in simulating wind patterns. It is also 
widely recognized for its significant contributions to 
researching and evaluating wind and solar energy pro-
duction [29–33]. Studies around the world have used the 
WRF model in literature to assess wind energy. Some 
examples of notable works can include: [33] in Fiji, [34] 
in Chile, [35] in Greece, [36] in Lesotho, [37] in Hawaii, 
[38] for the southern coast of Brazil, and [39] in a tropical 
region of Brazil.

This study aims to assess the accuracy of the WRF 
model to generate wind data for Burundi. The goal is 
to identify the most effective combination of physics 
schemes in the WRF model that accurately simulate wind 
patterns in Burundi. This study also aims to provide valu-
able insights regarding the wind potential in Burundi. 
These findings will be crucial for decision-makers who 
are considering wind energy projects in the future. Fur-
thermore, they will serve as a valuable resource for 
researchers interested in furthering their studies in this 
field.

The structure of this paper is as follows: Sect. "Research 
approach" provides a comprehensive overview of the 
method and specific modeling setup employed in gen-
erating Burundi’s high-resolution wind maps using the 
WRF modeling systems. Following this, Sect.  "Results 
and analysis" presents the results, emphasizing key 
points for discussion. To wrap up, Sect. "Conclusion and 
recommendations"presents the conclusions derived from 
this study.

Methods
Site measurements and study area
This study focuses on Burundi country (See Fig.  2), a 
landlocked country situated in East Africa between 2° 15′ 
– 4° 30′ S and 28° 58′ – 30° 53′ E. To the west, it shares 
its border with the Democratic Republic of Congo, while 
to the south and east, it borders Tanzania, and to the 
north, it is bordered by Rwanda. Burundi is 27,834 square 
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kilometers and is located in two major watersheds: the 
Nile basin ( 13, 800km2 ) and the Congo River basin cover-
ing 14, 034km2 . Being an East African country, Burundi’s 
climate is mainly shaped by the North–South movement 
of the Intertropical Convergence Zone (ITCZ), and the 
El-Nino Southern Oscillation (ENSO). Consequently, the 
annual averages of climate parameters like precipitation, 
temperature, and wind speeds vary according to the spe-
cific climate zone [6, 40, 41].

Burundi’s diverse topography is characterized by 
its lofty mountains, with the highest point being Mt. 
Heha at 2,670  m. Most of the country boasts an ele-
vation ranging from 1,525 to 2,000  m, on its majes-
tic central plateau. Towards the southeastern and 

southern border, this elevation gracefully descends to 
approximately 1,400  m. A western prominent chain 
of mountains stretching from north to south, defining 
the landscape, also characterizes it. Along the western 
border, a slender plain gracefully extends, hugging the 
stunning shores of Lake Tanganyika [42, 43].

Burundi country registers two dry seasons and two 
rainy seasons. The short dry season corresponds to the 
period from December to January, while the long dry 
season coincides with the months from June to August. 
In contrast, the two rainy seasons occur from Febru-
ary to May and from September to November. During 
the dry season, refreshing cool breezes blow from the 

Fig. 2  Study areas
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southeast, with rare rainfall and a frequent appearance 
of the sun.

The study utilizes data from four meteorological sta-
tions: Bujumbura, Gisozi, Gitega, and Mpota. The choice 
of these stations is motivated by the availability of reliable 
wind data measurements. These stations were selected 
based on their reliable wind data measurements and also 
their geographical and topographical aspects [20]. The 
Bujumbura station is situated in the picturesque Imbo 
Plain region, boasting an elevation range of 758  m to 
1000 m above sea level and nestled alongside the magnifi-
cent Lake Tanganyika. The other stations are positioned 
in mountainous areas, with elevations ranging from 1500 
to 2675 m above sea level [43].

The Geographical Institute of Burundi (IGEBU) pro-
vided approximately 20 years of daily wind data for each 
meteorological station. However, only a wind dataset 
covering seven years (2013–2019) was available for the 
Bujumbura station. The wind speed data for the Bujum-
bura station was recorded at a height of 12 m above 
ground level, while for the other three stations it was 
recorded at a height of 2 m above ground level.

To ensure accurate analysis, the wind speed data was 
extrapolated to the same height (12 m.a.g.l) using the 
power-law equation [19]:

vref and v are the wind speeds measured at the reference 
height, href  , and the extrapolated height, h, respectively. 
The exponent α is an empirical coefficient and is com-
monly assumed to be constant in wind resource assess-
ments for height difference levels not greater than 50 m. 
In non-complex terrain up to approximately 200 m above 
ground level, the wind profile can be accurately approxi-
mated by a power-law.

The surface roughness coefficient determines the 
power law exponent, which typically falls within the 
range of 0.05 to 0.5. However, in most cases, the value of 
α is assumed to be 0.143 (or 1/7). This approach is imple-
mented in the current work [44, 45].

Overview of the weather research and forecasting model
The WRF model is an incredible open-source tool 
that serves the dual purpose of research and numeri-
cal weather prediction. One of the key elements of this 
model is the effective representation of the interaction 
between various scales during simulation. The physical 
parameterization of WRF modeling is the most crucial 
aspect. It encompasses vital components like microphys-
ics, shortwave radiation, atmospheric long wave radia-
tion, cumulus parameterization, boundary layer, and 

(1)v = vref
h

href

α

physical parameterization scheme. These components 
play a vital role in enhancing the accuracy and reliability 
of the simulation results [46–48]. Burundi is one of Afri-
ca’s tropical highlands countries, along with Kenya, Tan-
zania, Uganda, Ethiopia, Burundi, and Rwanda. The WRF 
model has been employed for wind resource analysis in 
some of these countries, including [49] in Kenya, [50] in 
Tanzania, [51] in Ethiopia which encouraged the employ-
ment of the WRF model in this work.

Configuration of the WRF model
This study utilizes the widely used Advanced Research 
WRF (ARW) model version 4.3, a cutting-edge three-
dimensional, non-hydrostatic mesoscale model. Devel-
oped by the renowned National Center for Atmospheric 
Research (NCAR), this model is extensively used in both 
atmospheric processes and NWP research. For further 
details about this remarkable version, kindly refer to the 
reference [52].

The WRF model operates on a set of fundamental prin-
ciples, which form the foundation of its running. The 
simulation process of the WRF model encompasses three 
key components: external data sources, the WRF pre-
processing system (WPS), and the WRF post-processing. 
A necessary preliminary step before initiating the WPS is 
to establish the dimensions of the domains.

In this study, four nested domains are designated, 
employing a downscaling grid ratio of 3:1 (see Fig. 3):

•	 The outer domain, d01, is 75× 75 grid points with a 
27km× 27km resolution;

•	 The first nested domain d02, has 100× 100 grid 
points with a 9 km× 9km resolution;

•	 The second nested domain d03, has 109× 121 grid 
points with a 3km× 3km resolution;

•	 The last nested domain d04, has 217× 259 grid 
points with a 1 km× 1km resolution;

The WRF model, in the vertical direction, necessitates 
the establishment of a vertical grid based on a pressure-
level coordinate system. In this study, a vertical grid was 
defined using 61 pressure levels, with the model top posi-
tioned at 50 hPa. Additionally, the WRF model requires 
meteorological datasets for both the initial and boundary 
conditions. The research utilized the National Centers 
for Environmental Prediction Final Analysis dataset at a 
1° × 1° resolution, with a 6-h frequency output (ds083.2). 
This dataset provides open access to long-term continu-
ous data, starting from July 1999 [53, 54].

The seasonal results of the WRF model were obtained 
by conducting simulations for a continuous period of 
thirty-one days, covering the time from January 1, 2013 
to December 31, 2019. These simulations were executed 
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at 00:00 UTC, commencing at the start of each thirty-
day interval and running for 31  days. A similar process 
was conducted for periods of eleven consecutive days 
to obtain monthly results. The model was configured to 
generate an output data file every hour in the NetCDF 
format. Only data files for the innermost domain (d04) 
were used for the purpose of this study.

To accurately simulate the wind resource in the study 
area, we carefully selected specific combinations of 
WRF parameters. These choices were based on valuable 

insights gathered from previous research conducted in 
multiple regions within SSA (Details are depicted in 
Table  1) [55–57]. Twelve simulations were conducted 
to evaluate the applicability of the WRF model over 
Burundi (see Table 2).

Statistical metrics for model validation
Statistical analysis with onsite observations is the most 
widely used method to assess the accuracy of simulated 
data from WRF. It involves directly comparing model 

Fig. 3  WRF simulation nested domains

Table 1  WRF parameterization in some previous studies in tropical regions [55–60]

Parameterization schemes Country of considered study

Ghana Kenya Ethiopia Brazil

Microphysics Eta Microphysics WRF Single Moment (WSM) WSM6 WSM5

Long-Wave-Radiation Rapid RRadiative Transfer (RRTM) RRTM RRTMG RRTM

Short-Wave-Radiation Dudhia Dudhia RRTMG (MCICA Method) Dudhia

Surface Layer Eta Similarity MM5 Eta Similarity MM5

Land Surface Model Unified Noah Unified Noah Unified Noah RUC​

Planetary Bound Layer Mellor-Yamada Nakanishi Niino Level 3 Yonsei University (YSU) Mellor-Yamada-Janjic YSU

Cumulus Kain-Fritsch Kain-Fritsch Tiedike Kain-Fritsch
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output with observations using statistical formulas 
[61–63]. The root mean square error (RMSE) and bias 
(BIAS) functions were used to evaluate the simulations 
in this study and are defined by Eqs. (2) and (4):

Root mean square error:

Bias:

where Si represents the simulated data, Oi represents the 
measured data, and N is the total number of data values 
for comparison. The Root Mean Squared Error (RMSE) 
measures the overall error of a model by comparing its 
predicted values to actual observed values. A lower 
RMSE indicates a better alignment between the model’s 
predictions and the real data. On the other hand, the 
bias represents the average absolute difference between 
the predicted and observed values, revealing the typical 
magnitude of errors present in the model’s simulations 
[64]. Predicted values are compared to measured values 
to determine if simulations overestimate or underesti-
mate. A positive or negative bias indicates the extent of 
the overestimation or underestimation.

Wind power density
The wind power density (WPD) quantifies the kinetic 
energy flowing per square meter in the wind. it can be 
estimated by the Eq. (4):

(2)RMSE =

√

∑N

i=1

(Si − Oi)
2

N

(3)BIAS =

∑N

i=1

(Si − Oi)

N

(4)WPD =

1

2
ρv3

where v is the wind speed and ρ ≈ 1.23kg/m3 is the air 
density. Wind power density is a key parameter widely 
used for assessing the potential for wind energy genera-
tion in a given location. This method that does not take 
into account the specific turbine technology [65, 66].

Results
The climate in Burundi is characterized by moderate 
tropical conditions, with daily average temperatures 
ranging from 16◦C to 25◦C . As it has been mentioned in 
previous sections, the climatology patterns of Burundi 
are characterized by two rainy seasons: the long one from 
February to May and the short one between September 
and November, and two dry seasons: the long dry sea-
son from June to August and the shortest from Decem-
ber to January [67]. Given the dependency of wind speed 
and direction on climate, it is crucial to verify the per-
formance of the WRF model across various climatic con-
ditions. In this segment, the monthly mean wind speed 
and annual mean wind direction are extracted from WRF 
simulation results (wrfout files) spanning on a 7  years 
period. Python and MatLab tools were employed for vis-
ualizing the WRF output, and the results are scrutinized 
in line with the research objective of modelling wind 
flow patterns over Burundi and validating them against 
measurements.

Wind speed statistical analysis
The WRF’s ability to generate precise wind data is influ-
enced by the specific topography and climate of differ-
ent regions, resulting in variations in accuracy between 
low and high-altitude areas [55]. Furthermore, as stated 
earlier, the data collected on-site from the Gisozi, Gitega, 

Table 2  Various physical configurations for WRF simulations over Burundi (detailed in [52] Chapter8)

Simulations MP PBL CU

Options WRF Ref Options WRF Ref Options WRF Ref

S1 WSM3 3 YSU 1 KF 1

S2 WSM3 3 MYJ 2 KF 1

S3 WSM3 3 YSU 1 BMJ 2

S4 WSM3 3 YSU 1 GD 3

S5 WSM5 4 YSU 1 KF 1

S6 WSM5 4 MYJ 2 KF 1

S7 WSM5 4 YSU 1 BMJ 2

S8 WSM5 4 YSU 1 GD 3

S9 WSM6 6 YSU 1 KF 1

S10 WSM6 6 MYJ 2 KF 1

S11 WSM6 6 YSU 1 BMJ 2

S12 WSM6 6 YSU 1 GD 3
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and Mpota stations has been extrapolated from a height 
of 2 m to 12 m. This extrapolation may have implications 
for the accuracy of the WRF outputs. In addition to fac-
tors impacting the model performances, the results show 
that the model average bias significantly depends on the 
season, i.e., the wet and dry seasons for this study.

The Python tool was used to concatenate the results 
of the hourly WRF simulation output, creating the final 
mean seasonal/annual product for the research period. 
Table 3 clearly shows that simulation S9 (mp_physics = 6, 
bl_pbl = 1, cu_physics = 1) perform well for the Bujum-
bura station and S4 (mp_physics = 3, bl_pbl = 1, cu_phys-
ics = 3) fit for the three remaining stations. This difference 
in WRF physics parameterization can be explained by the 
fact that Bujumbura is situated in a plain region (Imbo 
plain region) at a low altitude compared to the other sta-
tions and also lies on Lake Tanganyika.

Analysis of wind direction
Understanding the spatial and temporal variation of 
wind across an area is a pivotal aspect in the process of 
identifying the ideal locations for wind projects. This 
knowledge is essential for minimizing undesirable shad-
ing effects. Wind roses, which present combined data on 
wind speed and direction, are a valuable tool for visually 
representing this crucial information [64, 68, 69].

This section emphasizes the use of wind roses to assess 
the WRF model’s ability to accurately represent the pre-
dominant wind direction. The wind rose is a crucial 
instrument for capturing the typical wind speed and 
direction at a specific location, providing a quick and 
concise overview of this data. The longest spoke on the 

rose unveils the most frequently occurring wind direc-
tion [70].

Figure 4 presents wind roses derived from seven years 
of hourly-observed data, spanning from January 2013 to 
December 2019.

Wind speed mapping
The sections above showcase the analysis of simulations 
conducted at a high spatial resolution of 1  km × 1  km. 
These simulations take into account data gathered 
from four meteorological stations strategically posi-
tioned across different areas of Burundi. As a result, this 
research study showcases the wind maps derived from 
the output simulations of WRF. Figures  5 and 6 display 
the WRF seasonal and annual mean wind speed fields, 
respectively, at a height of 12 m above ground level.

According to Table 4, the majority of commercial meg-
awatt (MW) wind turbine models from different manu-
facturers are expertly crafted to start generating power at 
an average wind speed of 3.0 m/s and above. This infor-
mation is essential for understanding the minimum wind 
speed needed to efficiently generate electricity using tur-
bines [71–73].

Wind power density estimation
The wind data in this study was evaluated at a height 
of 12  m. However, when installing a wind farm, the 
wind speed is assessed at the hub height of the turbine, 
which is generally greater than 30 m [77]. Furthermore, 
the wind power density (WPD) experiences significant 
changes as the wind speed varies. Specifically, when the 
average wind speed doubles, the WPD increases expo-
nentially by eightfold (Refer to Eq. 4). This exponential 

Table 3  Results of WRF simulations at a height of 12 m above ground level

Simulation Bujumbura
(Mean wind speed 4.46 m/s)

Gisozi
(Mean wind speed 2.14 m/s)

Gitega
(Mean wind speed 2.06 m/s)

Mpota
(Mean wind speed 
2.31 m/s)

BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

S1(3–1-1) -2.22 0.798 1.684 0.621 1.41 0.179 1.989 0.157

S2(3–2-1) -4.935 1.032 1.875 0.322 1.886 0.142 2.027 0.141

S3(3–1-2) -1.548 1.051 2.206 0.526 2.237 0.135 2.006 0.131

S4(3–1-3) -0.702 0.974 0.451 0.101 0.233 0.114 0.283 0.108

S5(4–1-1) -1.986 1.712 1.572 0.219 1.631 0.129 1.361 0.323

S6(4–2-1) -2.977 2.46 0.234 0.624 0.552 0.853 1.042 0.441

S7(4–1-2) -3.11 1.227 1.572 0.219 1.478 0.330 1.316 0.12

S8(4–1-3) -2.559 2.199 0.807 0.725 1.096 0.207 2.572 0.159

S9(6–1-1) -0.433 0.584 1.708 0.211 1.706 0.186 2.66 0.156

S10(6–2-1) -2.541 1.219 0.986 0.754 0.792 0.451 1.025 0.372

S11(6–1-2) -1.531 1.162 1.023 0.476 0.935 0.184 0.747 0.534

S12(6–1-3) -1.097 1.151 0.849 0.163 0.498 0.568 0.973 0.218
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Fig. 4  Wind rose diagrams illustrating the observed (a) and simulated (b) wind data for the selected stations
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relationship highlights the immense impact of wind 
speed on WPD. Moreover, the wind speed increases 
with the height above the ground due to the decrease 
in surface roughness and reduced drag effect [45, 78, 
79]. Taking these factors into account, along with the 
need to extrapolate wind data to the turbine hub height 
for wind energy applications, it becomes evident that 
Burundi has a high wind energy potential. Substantial 
research is thus necessary to accurately estimate this 
potential and determine the most suitable locations for 
wind farms in Burundi.

The criterion for feasibility of wind power density at 
12 m above ground level is divided into four classes(As 
listed in Table 5), which are categorized as follows [66]:

Discussion
The WRF parameters utilized in simulation S4 are per-
fectly aligned with the wind data from selected stations in 
Burundi. These include Single-Moment 3-Class (WSM3) 
for microphysics, Grell-Devenyi ensemble for cumulus 
physics, and Yonsei University for the planetary bound-
ary layer. This alignment is further corroborated by the 
noteworthy achievement of simulation S4 in producing 

relatively low values of RMSE and BIAS. This agreement 
between the simulation and the observed wind data dem-
onstrates the credibility and accuracy of the model.

The Bujumbura weather station exhibits a negative 
bias, suggesting that the WRF model tends to underesti-
mate wind data when compared to onsite measurements. 
Interestingly, the other three weather stations demon-
strate the opposite trend, with the model overestimat-
ing the wind data. These findings strongly support the 
hypothesis that the WRF model tends to underestimate 
higher wind speeds and overestimate lower wind speeds 
[80].

From Fig.  4, the predominant wind directions are 
typically found between the southwest and southeast, 
occasionally accompanied by winds from the west and 
northwest. The wind data simulation findings also closely 
match to the observed data, despite minor discrepan-
cies in wind speed and direction between the two data-
sets. Previous research has shown that the disparities 
between measured and simulated data may be attributed 
to the sensitivity of parameter schemes to changes in 
wind speed at different atmospheric levels [81–83]. Over-
all, the analysis comparing the measured and simulated 

Fig. 5  High-resolution mean seasonal wind speed over Burundi (At 12m above ground level)
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wind data demonstrates that the WRF model emerges as 
a reliable and useful alternative source of wind data for 
Burundi. Considering the difficulty in obtaining precise 
and comprehensive wind data for the entire country, the 
WRF model emerges as an indispensable tool for accu-
rately predicting and modeling wind resources. By uti-
lizing the WRF model, researchers can efficiently assess 
wind potential across different regions of Burundi, ulti-
mately aiding in the development of renewable energy 
projects in the country. This approach presents a viable 
solution to address the limited availability of measured 
wind data and supports informed decision-making for 
sustainable energy initiatives.

According to Figs.  5 and 6, during the long dry sea-
son, Burundi experienced notably elevated wind speeds, 
reaching maximum values of between 7.5 and 9.7 m/s. 
During the wet seasons, the average wind speeds tend to 
be considerably lower, reaching values of less than 6 m/s. 
Not only does the long dry season experience relatively 
strong winds, but even the short dry season also records 
high wind speeds in the simulation. Moreover, certain 
isolated locations show exceptionally high wind speeds.

In comparison to the other regions of Burundi, the 
western region consistently experiences higher wind 
speeds. This observation is supported by the wind data 
collected at the Bujumbura station, which consistently 
records higher speeds compared to other stations. This 
further confirms the accuracy of the WRF model in accu-
rately simulating wind patterns across Burundi.

The wind speed maps confirm the presence of potential 
locations in Burundi for wind power production farms. 
A thorough analysis reveals that these locations con-
sistently experience favorable wind speeds throughout 
the entire year. This makes them exceptionally suitable 
for the generation of wind power, especially in western 
Burundi, as demonstrated in Fig.  6. This region offers 
an ideal location for the establishment of wind farms, 
allowing for the efficient harnessing of renewable energy. 
Additionally, the strategic placement of wind power pro-
duction farms in these locations could contribute to the 
overall goal of diversifying Burundi’s energy sources and 
reducing dependence on non-renewable resources like 
fossil fuels. This, in turn, could lead to significant envi-
ronmental and economic benefits for the region.

Fig. 6  High-resolution annual wind speed over Burundi (At 12m above ground level)
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The map in Fig.  6 displays areas highlighted in red 
color, representing high wind speeds greater than, result-
ing in an estimated WPD of 138.3W/m2. These locations 
are classified as Class 3 (Good) based on average wind 
speeds, with the estimation being derived from Eq.  1. 
Furthermore, during the dry season, the estimated WPD 
at these windy locations ranges between 259.45 and 448.3 
W/m2, placing them in Class 4, a high level classified as 
Very Good.

Conclusion
This paper outlines the wind resource assessment of spe-
cific locations in Burundi utilizing the weather research 
and forecasting (WRF) model. The primary objective was 
to assess the effectiveness of the WRF model in estimat-
ing wind flow across Burundi with precision. The RMSE 
and BIAS results clearly demonstrate that the WSM3, 
Grell-Devenyi, and Yonsei University WRF models, in 
this particular setup, accurately model Burundi wind data 
compared to ground meas-urements. These findings are 
crucial for the future development of renewable energy 
projects in Burundi, as they provide confidence in the 
accuracy of the wind modeling data.

Additionally, detailed wind resource maps at 12  m 
above ground level were created to pinpoint potential 
areas suitable for efficient wind power plants in Burundi. 
This was achieved through a comparison of predicted 
and measured mean wind speeds. The results indicate 

that the WRF model effectively simulated wind speeds, 
as evident from the relatively low annual RMSE and bias 
percentage values. High-resolution wind maps reveal that 
during dry seasons, there are consistently strong mean 
wind speeds, ranging from 4 to 9.7  m/s, at 12  m eleva-
tion over the span of seven years. Bujumbura emerges 
as a favorable location for wind power projects. Further-
more, the prevailing wind directions globally are from the 
southeast to the southwest. This research underlines the 
potential of data produced by the WRF model for fur-
ther advanced research in wind energy assessment for 
Burundi.

Through the groundbreaking adoption of this research 
methodology in the Burundi country, a world of new 
possibilities for comprehending and harnessing wind 
resources in Burundi is unveiled. The insights yielded by 
the WRF model hold great value and have the potential 
to contribute significantly to the advancement of sus-
tainable and renewable energy sources in the country. 
Therefore, it is strongly urged that Burundi’s policymak-
ers and stakeholders take full cognizance of the revela-
tions brought forth by this study and actively consider the 
integration of wind energy within their national energy 
strategies. Moreover, this study serves as a launchpad 
for researchers, indicating promising avenues for future 
investigation and collaboration aimed at optimizing 
the utilization of wind energy in Burundi. By continu-
ously refining and expanding upon the findings of this 
research, a more vivid and comprehensive understanding 
of the viability and impact of wind energy in the region 
can be realized.
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Table 4  Characteristics of certain wind turbine designs [73–76]

Turbine model Hub height (m) Cut-in speed (m/s) Cut-out speed (m/s) Rated speed (m/s) Rated 
power 
(MW)

Enercon E-82 E4 3.000 120/135 3 25 12 3

SWT-3.6–107 80 3 25 13 3.6

Enercon E-175 EP5 112/132/162 2 25 12.5 6

GE 1.5xle 58.7/80 3.5 20 11.5 1.5

GE 1.5sle 61.4/64.7/80/85 3.5 25 12 1.5

Av 927 60/80 3 25 13.1 3.3

Vestas v90 80/95/105 4 25 13 2

Lagerwey L100 75/98/135 2 22 11.7 2.5

Table 5  Wind power density classification

Class Resource category WPD interval (W/m2)

1 Weak  < 25

2 Weakly Good 25 to 75

3 Good 75 to 175

4 Very Good  > 175
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